A TOTAL LOOK AT OIL BURNER NOZZLES

ISO 9001 CERTIFIED
A Reference Guide for the Burner Service Technician

The complete oil heating system begins at the tank and ends at the chimney. At the heart of the system is a tiny, yet important piece of hardware — the nozzle. It performs the vital functions that keep the flame generating warm, comfortable heat. In fact, it plays such a significant role in the entire system that we feel the technician should know all about the nozzle.

In this reference guide, we’ll explore how the nozzle works with other components of the system and give you some oil nozzle facts that can help you maintain a clean, reliable and economical heating system.

Contents

Why Use Nozzles? 1
What the Nozzle Does 2
How A Nozzle Works 3
Nozzle Selection; Delavan Nozzles 4
Nozzle Types 4
Burner Manufacturers’ Nozzle Recommendations;
Nozzle Interchange 6
Flow Rate; Proper Flow Rates 7
Determination of Proper Firing Rate for a House 8
Spray Angle; Spray Pattern 9
Burner Air Patterns; Recommended Combustion
Chamber Dimensions 10
Effects of Excess Air on Nozzle Performance;
What Affects Droplet Size? 11
Effects of Pressure on Nozzle Performance 12
Effects of Pressure on Nozzle Flow Rate 13
Effects of Viscosity on Nozzle Performance 14
Examples of Proper Nozzle Selection 15
Fuel Saving Devices for the Consumer 18
Preheaters and Chemical Additives 18
Residential Oil Burner Adjustments for
Optimum Fuel Utilization 19
Good Filtration Is Important 19
Clean Air Technology; ProTek™ Nozzle System 20
Delavan Filtration Products; Nozzle Filters
and Strainers; Line Filter 21
Other Accessories 22
Nozzle Care and Service Tips 23
General Trouble Shooting Guide 26
Questions Asked by Oil Heating Service Technicians 30
Other Delavan Nozzles Available 33
Why Use Nozzles?
For a better understanding of how a nozzle fits into the performance of an oil burner, let us first review the steps in the process of efficient combustion.

Like all combustible matter, the oil must first be vaporized—converted to a vapor or gas—before combustion can take place. This is usually accomplished by the application of heat.

The oil vapor must be mixed with air in order to have oxygen present for combustion.

The temperature of this mixture must be increased above the ignition point.

A continuous supply of air and fuel must be provided for continuous combustion.

The products of combustion must be removed from the combustion chamber.

The simplest way to burn fuel oil is the old vaporizing pot type burner in which heat is applied to a puddle of oil, thus vaporizing the fuel. These vapors are then burned after mixing with the proper amount of air.

In most applications, this method of vaporizing is too slow for high rates of combustion and cannot be controlled in the low rates, which leads back to the original question of why nozzles are used. One of the functions of a nozzle is to atomize the fuel, or break it up into tiny droplets which can be vaporized in a much shorter period of time when exposed to high temperatures. This booklet will be concerned primarily with the high-pressure atomizing nozzle since it is the most common in the Oil Heat Industry.
What the Nozzle Does

The atomizing nozzle performs three vital functions for an oil burner:

1. **Atomizing** As just discussed, it speeds up the vaporization process by breaking up the oil into tiny droplets...something like 55-billion per gallon of oil at a pressure of 100-psi (standard in the industry). The exposed surface of a gallon of oil is thereby expanded to approximately 690,000 square inches of burning surface. Individual droplet sizes range from .0002 inch to .010 inch. The smaller droplets are necessary for fast quiet ignition and to establish a flame front close to the burner head. The larger droplets take longer to burn and help fill the combustion chamber.

2. **Metering** A nozzle is so designed and dimensioned that it will deliver a fixed amount of atomized fuel to the combustion chamber...within approximately plus or minus 5% of rated capacity. This means that functional dimensions must be controlled very closely. It also means that nozzles must be available in many flow rates to satisfy a wide range of industry needs. Under 5.00 GPH, for example, over 20 different flow rates and 6 different spray angles are considered standard.

3. **Patterning** A nozzle is also expected to deliver the atomized fuel to the combustion chamber in a uniform spray pattern and spray angle best suited to the requirements of a specific burner. More details on patterns and angles later.
How A Nozzle Works

Now that we know what a nozzle is supposed to do, let’s see how it does it.

But before we do, let’s take a look at the cutaway showing the functional parts of a typical Delavan nozzle (Fig. 1). The flow rate, spray angle and pattern are directly related to the design of the tangential slots, swirl chamber and orifice.

![Cutaway view of a Delavan nozzle.](image)

First, a source of energy is needed to break up the oil into small droplets. Therefore pressure is supplied to the nozzle, usually from a motor-driven pump at 100-150 psi (Fig. 2). But pressure energy alone doesn’t do the job. It must first be converted to velocity energy and this is accomplished by directing the pressurized fuel through a set of slots which are cut in the distributor at an angle, or tangentially, to create a high velocity rotation within the swirl chamber. At this point, about half of the pressure energy is converted to velocity energy.

As the oil swirls, centrifugal force is exerted against the sides of the chamber, driving the oil against the orifice walls, leaving a void or core of air in the center. The oil then moves forward out of the orifice in the form of a hollow tube. The “tube” becomes a cone shaped film of oil as it emerges from the orifice, ultimately stretching to a point where it ruptures and throws off droplets of liquid.

How a Nozzle Works

![How a nozzle works.](image)
Nozzle Selection
To match a nozzle to a burner takes field-service experience, trial-and-error, or a good foundation of understanding angles, rates and patterns.

Nozzle Ratings and Testing
To insure consistent quality, every Delavan nozzle is tested for flow rate and spray angle on modern, high instrumented test stands. Spray quality is observed during testing for uniformity, balance and flutter.

Delavan Nozzles
Test oil is mixed to nominal no. 2 oil specifications. The viscosity is maintained within:1±.04 centistokes (.03 SSU), gravity to a total spread of 11/2° API and temperature at 80°F ±2° F. Test pressure is set at 100 psi. These conditions are continuously monitored and instrument accuracy is maintained within ±.5% or better. Nozzle testing is conducted in an air-conditioned, controlled environment, with a temperature variation of 4° F maximum.

Nozzle Types

<table>
<thead>
<tr>
<th>Nozzle Type</th>
<th>Vial Color</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Red</td>
</tr>
<tr>
<td>Del-O-Flo A</td>
<td>Black</td>
</tr>
<tr>
<td>B</td>
<td>Royal Blue</td>
</tr>
<tr>
<td>Del-O-Flo B</td>
<td>Gold</td>
</tr>
<tr>
<td>W</td>
<td>Green</td>
</tr>
</tbody>
</table>

Hollow Cone Nozzle (Type A)
Hollow cone nozzles can be used in burners with a hollow air pattern and also for use in small burners (those firing 1.00 GPH and under), regardless of air pattern. Hollow cone nozzles generally have more stable spray angles and patterns under adverse conditions than solid cone nozzles of the same flow rate. This is an important advantage in fractional gallonage nozzles where high viscosity fuel may cause a reduction in spray angle and an increase in droplet size.

Type A nozzles produce a spray which delivers fine droplets outside the periphery of the main spray cone. These fine droplets greatly enhance ignition and create a stable flame for use with flame retention burners.

For Type A Del-O-Flo® low flow nozzles (see page 5).
Solid Cone Nozzle (Type B)
Type B nozzles produce a spray which distributes droplets fairly uniformly throughout the complete pattern. This spray pattern becomes progressively more hollow at high flow rates, particularly above 8.00 GPH. These nozzles may be used in larger burners (those firing above 2.00 or 3.00 GPH) to provide smoother ignition. They can also be used where the air pattern of the burner is heavy in the center or where long fires are required.

For Type B Del-O-Flo low flow nozzles see below.

Type W Nozzle
Type W nozzles produce a spray which is neither truly hollow nor solid. These nozzles frequently can be used in place of either solid or hollow cone nozzles between .40 GPH and 8.00 GPH, regardless of the burner’s air pattern. The lower flow rates tend to be hollower. Higher flow rates tend to be more solid.

Del-O-Flo® Nozzle
Del-O-Flo® nozzles are low-capacity nozzles designed to minimize the usual Nozzle plugging problems associated with low flow rates. Del-O-Flo® nozzles are available in A and B types.

Delavan performed a test in which a .50 gph Del-O-Flo® nozzle and a .50 gph standard hollow cone nozzle were run continuously for 23 hours from a double adapter using the same oil supply. Engineers contaminated clean oil with a controlled amount of iron oxide, rust and sand. The pictures to the left show the nozzles after the test (these views are looking inside the nozzle body from the filter end). You can see the iron oxide contamination build up in the standard nozzle (Fig. 6).

Fig. 7 shows the same view of the Del-O-Flo® nozzle. Although the dark streaks show a discoloration from sand, there is no contamination build up.
Burner Manufacturer’s Recommendations

Effective February 1997. Subject to updating by burner manufacturers. For models not listed, contact burner manufacturer. Always follow the appliance manufacturer’s instructions for the correct nozzle specification.

Nozzle Interchange

Replacing a nozzle of one make with another sometimes presents problems. This is partly due to unique design differences among the various makes, plus the fact that the nozzle manufacturers use different methods for evaluating spray angles, patterns and spray quality.

When interchanging a Delavan A, B or W with a Hago, it may be necessary to try the next wider spray angle.

Del-O-Flo A and B nozzles will interchange whenever standard A or B nozzles are called for.

Under 1.00 GPH use A; above 1.00 use B.

Del-O-Flo A and B nozzles will interchange whenever standard A or B nozzles are called for.

Nozzle Interchange Chart

<table>
<thead>
<tr>
<th>Manufacturer</th>
<th>Model</th>
<th>Delavan Nozzle</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aero Burner</td>
<td>F-AFC</td>
<td>80° W, A or B</td>
</tr>
<tr>
<td></td>
<td>HF-US</td>
<td>80° W, A or B</td>
</tr>
<tr>
<td></td>
<td>HF-AFC</td>
<td>80° W, A or B</td>
</tr>
<tr>
<td></td>
<td>SV-SSV</td>
<td>70° or 80° B</td>
</tr>
<tr>
<td>R.W. Beckett</td>
<td>AF/F (F)</td>
<td>60°, 70° or 80° A or B (100-150 PSI)</td>
</tr>
<tr>
<td></td>
<td>AF/A (M)</td>
<td>60° or 70° A or B (100-150 PSI)</td>
</tr>
<tr>
<td></td>
<td>AFII (FB)</td>
<td>45°, 60° or 70° A, W or B (140-200 PSI)</td>
</tr>
<tr>
<td></td>
<td>AF II (HLK)</td>
<td>45°, 50°, 60° A, W or B (140-200 PSI)</td>
</tr>
<tr>
<td>The Carlin Co.</td>
<td>99 FRD (Std.)</td>
<td>50°-75 GPH 60°A</td>
</tr>
<tr>
<td></td>
<td>100 CRD (Std.)</td>
<td>50°-75 GPH 60°A</td>
</tr>
<tr>
<td></td>
<td>Elite EZ-1</td>
<td>50°-100 GPH 70°A</td>
</tr>
<tr>
<td></td>
<td>Elite (EZ-2,3)</td>
<td>All Flow Rates 60° A, B or SS</td>
</tr>
<tr>
<td>Riello Burners</td>
<td>Mectron 3M</td>
<td>600 W, B, or Del-O-Flo A (Up to .85 GPH)</td>
</tr>
<tr>
<td></td>
<td>F3, F5</td>
<td>.40-.25 GPH 60° or 80° W or A</td>
</tr>
<tr>
<td></td>
<td>F10</td>
<td>1.25-.50 GPH 60° W or A</td>
</tr>
<tr>
<td></td>
<td>F15, F20</td>
<td>2.00-.50 GPH 45° or 60° W or B</td>
</tr>
<tr>
<td></td>
<td>R35.3, R35.5</td>
<td>50°-125 GPH 60° or 80° W or B</td>
</tr>
<tr>
<td></td>
<td>Press Series</td>
<td>50°-120 GPH 45° or 60° B</td>
</tr>
<tr>
<td>Intertherm</td>
<td>MAC 1265</td>
<td>P/N 6001-181 or .55 GPH 90° W</td>
</tr>
<tr>
<td></td>
<td>M SH 066</td>
<td>50 - 80° A</td>
</tr>
<tr>
<td></td>
<td>M SH 068</td>
<td>55 - 80° A</td>
</tr>
<tr>
<td>Wayne Home</td>
<td>P100</td>
<td>50°-100 GPH 60°, 70°, 80° A or B</td>
</tr>
<tr>
<td>Equipment</td>
<td>EH/ASR</td>
<td>.75-.30 GPH 60°, 70°, 80°, 60° ***</td>
</tr>
<tr>
<td></td>
<td>M SR</td>
<td>.75-.25 GPH 60°, 70°, 80°, 60° ***</td>
</tr>
<tr>
<td></td>
<td>H5</td>
<td>50°-30.00 GPH 60°, 70°, 80° B</td>
</tr>
<tr>
<td></td>
<td>H5</td>
<td>50°-30.00 GPH 60°, 70°, 80° B</td>
</tr>
<tr>
<td></td>
<td>EG-1</td>
<td>50°-30.00 GPH 88°, 70°, 60° ***</td>
</tr>
<tr>
<td>Weil-Mcclain</td>
<td>QB180 (150 PSI)</td>
<td>.55-1.80 GPH 45°, 60°, 70°, 80° A or B</td>
</tr>
<tr>
<td></td>
<td>QB300 (140 PSI)</td>
<td>1.75-3.00 GPH 45°, 60°, 70°, 80° B</td>
</tr>
</tbody>
</table>

Replacing a nozzle of one make with another sometimes presents problems. This is partly due to unique design differences among the various makes, plus the fact that the nozzle manufacturers use different methods for evaluating spray angles, patterns and spray quality.

*When interchanging a Delavan A, B or W with a Hago, it may be necessary to try the next wider spray angle.**

Del-O-Flo A and B nozzles will interchange whenever standard A or B nozzles are called for.
Flow Rate

Atomizing nozzles are available in a wide range of flow rates, all but eliminating the need for specially calibrated nozzles. Between 1.00 GPH and 2.00 GPH, for example, seven different flow rates are available. Generally, with hot water and warm air heat, the smallest firing rate that will adequately heat the house on the coldest day is the proper size to use and the most economical. Short on-cycles result in low efficiency. Another guideline is to select the flow rate that provides a reasonable stack temperature regardless of the connected load. (According to the New England Fuel Institute, aim for a stack temperature of 400°F or lower on matched packaged units or 500°F or lower on conversion burners.) If the boiler or furnace is undersized for the load, it may be necessary to fire for the load and ignore the efficiency.

Proper Flow Rates

The proper size nozzle for a given burner unit is sometimes stamped on the nameplate of the unit.

The following guidelines may be used for determining the proper flow rates:

If the unit rating is given in BTU per hour input, the nozzle size may be determined by...

\[
GPH = \frac{BTU\ Input}{140,000}
\]

If the unit rating is given in BTU output...

\[
GPH = \frac{BTU\ Output}{(Efficiency\ %) \times 140,000}
\]

On a steam job, if the total square feet of steam radiation, including piping, is known...

\[
GPH = \frac{Total\ Sq.\ Ft.\ of\ Steam \times 240}{(Efficiency\ %) \times 140,000}
\]

If the system is hot water operating at 180° and the total square feet of radiation, including piping, is known...

\[
GPH = \frac{Total\ Sq.\ Ft.\ of\ Hot\ Water \times 165}{(Efficiency\ %) \times 140,000}
\]
Determination of Proper Firing Rate for a House

Two procedures for determining the optimum nozzle size have been developed. One is the standard heat loss calculation method and the other is the K-factor sizing formula.

1. **Standard Heat Loss Calculations Method** If the amount of heat loss is known, the amount of replacement heat (heat load) needed is also known. From this information, the proper size of a boiler or furnace can be determined, thus the correct nozzle size. This method can be used for determining the proper nozzle size in new construction, a new heating system in an existing house, or a new oil burner installation. This method requires extensive measurements of the house and other construction details. For more information, refer to recommended resource material listed below.

 Recommended Resource Material:

2. **The K-Factor Sizing Formula** This is a sizing calculation that meets oil dealer and heating contractor needs for a quick procedure to determine the proper nozzle size for existing heating systems. The K-factor calculation uses oil dealer records of degree days (a measure of “coldness”) and oil used, plus other information, but does not require any measurements of the house. For more information, refer to recommended resource material listed below.

 Recommended Resource Material:

Spray Angle
Spray angles are available from 30° through 90° in most nozzle sizes to meet the requirements of a wide variety of burner air patterns and combustion chambers.

Usually it is desirable to fit the spray angle to the air pattern of the burner. In today’s flame retention burner, it is possible to fire more than one spray angle with good results. Generally, round or square combustion chambers should be fired with 70° to 90° nozzles. Long, narrow chambers usually require 30° to 60° spray angles.

Spray Pattern
Spray pattern is another consideration in determining which nozzle to use. There’s a great difference between the solid pattern on the left and the hollow pattern on the right. (See Fig. 10) These patterns were photographed as a laser light beam passed through the spray. Lasers are used at the Delavan test laboratory to study patterns and spray characteristics.

Figure 8
Spray angles available

Figure 9
70° to 90° spray angles for round or square chambers
30° to 60° spray angles for long, narrow chambers

Figure 10
(Left) Solid cone pattern, (Right) Hollow cone pattern
Burner Air Patterns

Burner air patterns are much like nozzle spray patterns in that they fall into the same general classifications, either hollow or solid. As you would expect, a burner with a hollow air pattern generally requires a hollow cone fuel nozzle. A burner with a solid air pattern will give highest efficiency with a solid cone nozzle, but the flame will probably be longer.

Recommended Combustion Chamber Dimensions

<table>
<thead>
<tr>
<th>Nozzle Size or Rating (GPH)</th>
<th>Spray Angle</th>
<th>Square or Rectangular Combustion Chamber</th>
<th>Round Chamber (Diameter in Inches)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>L (In.)</td>
<td>W (In.)</td>
</tr>
<tr>
<td>0.50 – 0.65</td>
<td>80°</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>0.75 – 0.85</td>
<td>60°</td>
<td>10</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>80°</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>1.00 – 1.10</td>
<td>45°</td>
<td>14</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>60°</td>
<td>11</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>80°</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>1.25 – 1.35</td>
<td>45°</td>
<td>15</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>60°</td>
<td>12</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>80°</td>
<td>11</td>
<td>11</td>
</tr>
<tr>
<td>1.50 – 1.65</td>
<td>45°</td>
<td>16</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>60°</td>
<td>13</td>
<td>11</td>
</tr>
<tr>
<td></td>
<td>80°</td>
<td>12</td>
<td>12</td>
</tr>
<tr>
<td>1.75 – 2.00</td>
<td>45°</td>
<td>18</td>
<td>11</td>
</tr>
<tr>
<td></td>
<td>60°</td>
<td>15</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>80°</td>
<td>14</td>
<td>13</td>
</tr>
<tr>
<td>2.25 – 2.50</td>
<td>45°</td>
<td>18</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>60°</td>
<td>17</td>
<td>13</td>
</tr>
<tr>
<td></td>
<td>80°</td>
<td>15</td>
<td>14</td>
</tr>
<tr>
<td>3.0</td>
<td>45°</td>
<td>20</td>
<td>13</td>
</tr>
<tr>
<td></td>
<td>60°</td>
<td>19</td>
<td>14</td>
</tr>
<tr>
<td></td>
<td>80°</td>
<td>18</td>
<td>16</td>
</tr>
</tbody>
</table>

*Recommend oblong chamber for narrow sprays.

NOTES: These dimensions are for average conversion burners. Burners with special firing heads may require special chambers.

Higher back wall, flame baffle or corbelled back wall increase efficiency on many jobs.

Combustion chamber floor should be insulated on conversion jobs.

For larger nozzle sizes, use the same approximate proportions and 90-sq. in. of floor area per 1 gph.
Effects of Excess Air On Nozzle Performance

Excess air in the system can be a trouble spot. Of course the burner must have sufficient air to provide good mixing of air and fuel oil, or you get incomplete combustion and smoke. Unfortunately, as the amount of air is increased, the transfer of heat is reduced.

A delicate balance must be achieved between smoke problems (caused by insufficient excess air) and reduced heat transfer (caused by unnecessary excess air).

An air leak in the system also causes lost efficiency. It cools down combustion gases, lowers temperature, and raises stack temperature.

What Affects Droplet Size?

It is sometimes assumed that the smallest possible droplet size is the most desirable for all applications. While this may be true in some cases, it doesn’t apply across the board. The safest generalization that can be made is to find the droplet size and distribution that produces the quietest, most efficient combustion. Here are some of the major factors affecting the droplet size.

- **Higher Flow Rate Nozzles** usually produce larger droplets, assuming pressure, fuel properties and spray angle remain the same. A 10.00 GPH nozzle, for instance, will produce larger droplets than a 5.00 GPH nozzle.

- **Wider Spray Angles** produce smaller droplets

- **High Viscosity** fuel produces larger droplets in the spray at the same pressure.

- **Heating Fuel** reduces its viscosity and produces smaller droplets.

- **Increasing Fuel Pressure** reduces droplet size.
Effects of Pressure On Nozzle Performance

Normally, 100 psi is considered satisfactory for the fixed pressure supplied to the nozzle, and all manufacturers calibrate their nozzles at that pressure.

It is interesting to observe the sprays of a nozzle at various pressures. See Figures 11-13. At the low pressure, the cone-shaped film is long and the droplets breaking off from it are large and irregular. Then, as the pressure increases, the spray angle becomes better defined. Once a stable pattern is formed, any increase in pressure does not affect the basic spray angle, measured directly in front of the orifice.

At higher pressure, however, you will note that beyond the area of the basic spray angle, the movement of droplets does make a slight change in direction—inward. That’s because at this point the air pressure outside the spray cone is higher than that on the inside, which deforms the spray inward.

Pressure has another predictable effect on nozzle performance. As you would expect, an increase in pressure causes a corresponding increase in the flow rate of a nozzle, assuming all other factors remain equal. This relationship between pressure and flow rate is best shown in the table on page 13.

Increasing pressure also reduces droplet size in the spray. For example, an increase from 100 to 300 psi reduces the average droplet diameter about 28%. One last word on the subject: if pressure is too low, you may be under-firing the burner. Efficiencies may also drop sharply because droplet size is larger and the spray pattern changed. If pressure isn’t carefully checked,* the marking on the nozzle becomes meaningless. Pressures of more than 100 psi are sometime desirable, but rarely do burners operate at anything less.

Figure 11 Spray at 10 psi pressure

* Pressure can be reduced between the pump and the chamber by clogged filters in the line or the nozzle. Check pressure whenever reduced, not just at the pump.
<table>
<thead>
<tr>
<th>Nozzle Rating at 100 PSI</th>
<th>Nozzle Flow Rates In Gallons Per Hour (Approx.)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>120 PSI</td>
</tr>
<tr>
<td>0.40</td>
<td>0.44</td>
</tr>
<tr>
<td>0.50</td>
<td>0.55</td>
</tr>
<tr>
<td>0.60</td>
<td>0.66</td>
</tr>
<tr>
<td>0.65</td>
<td>0.71</td>
</tr>
<tr>
<td>0.75</td>
<td>0.82</td>
</tr>
<tr>
<td>0.85</td>
<td>0.93</td>
</tr>
<tr>
<td>0.90</td>
<td>0.99</td>
</tr>
<tr>
<td>1.00</td>
<td>1.00</td>
</tr>
<tr>
<td>1.10</td>
<td>1.20</td>
</tr>
<tr>
<td>1.20</td>
<td>1.31</td>
</tr>
<tr>
<td>1.25</td>
<td>1.37</td>
</tr>
<tr>
<td>1.35</td>
<td>1.48</td>
</tr>
<tr>
<td>1.50</td>
<td>1.64</td>
</tr>
<tr>
<td>1.65</td>
<td>1.81</td>
</tr>
<tr>
<td>1.75</td>
<td>1.92</td>
</tr>
<tr>
<td>2.00</td>
<td>2.19</td>
</tr>
<tr>
<td>2.25</td>
<td>2.46</td>
</tr>
<tr>
<td>2.50</td>
<td>2.74</td>
</tr>
<tr>
<td>2.75</td>
<td>3.01</td>
</tr>
<tr>
<td>3.00</td>
<td>3.29</td>
</tr>
<tr>
<td>3.25</td>
<td>3.56</td>
</tr>
<tr>
<td>3.50</td>
<td>3.83</td>
</tr>
<tr>
<td>4.00</td>
<td>4.38</td>
</tr>
<tr>
<td>4.50</td>
<td>4.93</td>
</tr>
<tr>
<td>5.00</td>
<td>5.48</td>
</tr>
<tr>
<td>5.50</td>
<td>6.02</td>
</tr>
<tr>
<td>6.00</td>
<td>6.57</td>
</tr>
<tr>
<td>6.50</td>
<td>7.12</td>
</tr>
<tr>
<td>7.00</td>
<td>7.67</td>
</tr>
<tr>
<td>8.00</td>
<td>8.76</td>
</tr>
<tr>
<td>8.50</td>
<td>9.31</td>
</tr>
<tr>
<td>9.00</td>
<td>9.86</td>
</tr>
<tr>
<td>9.50</td>
<td>10.41</td>
</tr>
<tr>
<td>10.00</td>
<td>10.95</td>
</tr>
<tr>
<td>11.00</td>
<td>12.05</td>
</tr>
<tr>
<td>12.00</td>
<td>13.15</td>
</tr>
<tr>
<td>13.00</td>
<td>14.24</td>
</tr>
<tr>
<td>14.00</td>
<td>15.34</td>
</tr>
<tr>
<td>15.00</td>
<td>16.43</td>
</tr>
<tr>
<td>16.00</td>
<td>17.53</td>
</tr>
<tr>
<td>18.00</td>
<td>19.72</td>
</tr>
<tr>
<td>20.00</td>
<td>21.91</td>
</tr>
<tr>
<td>22.00</td>
<td>24.10</td>
</tr>
<tr>
<td>24.00</td>
<td>26.29</td>
</tr>
<tr>
<td>26.00</td>
<td>28.48</td>
</tr>
<tr>
<td>28.00</td>
<td>30.67</td>
</tr>
<tr>
<td>30.00</td>
<td>32.86</td>
</tr>
<tr>
<td>32.00</td>
<td>35.05</td>
</tr>
<tr>
<td>35.00</td>
<td>38.34</td>
</tr>
<tr>
<td>40.00</td>
<td>43.82</td>
</tr>
<tr>
<td>45.00</td>
<td>49.30</td>
</tr>
<tr>
<td>50.00</td>
<td>54.77</td>
</tr>
</tbody>
</table>
Effects of Viscosity On Nozzle Performance (Also see page 26)

One of the most important factors affecting nozzle performance is viscosity, technically defined as a measure of resistance to flow within a liquid. More commonly, viscosity is thought of in terms of “thickness.” For example, a gallon of gasoline can be poured through the spout of a can much faster than a gallon of tar. That’s because the tar has a much higher viscosity than gasoline, or greater resistance to flow.

Strangely enough, the opposite is true to nozzle applications. As we will see in a minute, with an increase in viscosity, nozzle flow rate also increases.

Temperature is the main factor in changing oil viscosities. It works something like a scale (Fig. 14). As the temperature goes down, the viscosity goes up. Take No. 2 fuel oil for example: at a temperature of 100°F, it has a viscosity of 35 SSU (Seconds Saybolt Universal). But when the temperature drops to 20°F, the viscosity increases to 65 SSU.

An outside storage tank may contain cold oil, and cold oil can cause problems. Here’s what happens: the thick oil passes into the nozzle, through the slots, and into the swirl chamber. Since it is more viscous, the rotational velocity is slowed down. This causes a thickening of the walls in the cone of oil as it emerges from the orifice, so the nozzle actually delivers more fuel and larger droplets (see Figures 15 and 16). And as a result, the flame front moves away from the burner head. In severe cases, atomization may be so poor that the fuel cannot be ignited. Or if it is ignited, it often produces a long, narrow and noisy fire that burns off the back wall of the combustion burner.
Although such situations are not widespread, it is good to know how to diagnose the problem and find a solution for it. While some success has been reported with special nozzles, most service technicians have found that the surest solution is to increase the energy input. This is done by increasing pump pressure from 100 psi to 120-125 psi. And since increased pressure means increased flow rate, it may be desirable to use the next size smaller nozzle. As the burner ignites, it acts as an oil pre-heater and the viscosity problem will disappear in 10 to 15 minutes. The burner can be left at this increased pressure without harm to the pump. In extreme cases of high viscosity due to cold oil it may be necessary to pre-heat the oil to get ignition.

Figure 14 How temperature affects viscosity.

Figure 15 Cold Oil

Figure 16 High viscosity spray
Examples of Proper Nozzle Selection

The following recommendations are solidly based on many years of field experience and laboratory testing. But, like most recommendations, they are subject to exceptional cases or conditions.

Burners with Hollow Air Pattern The burner air pattern shown above produces a very definite hollow “air spray,” with no measurable air velocity at the center of the pattern. The angle of this particular air spray shows it will require a 70° to 80° hollow cone nozzle for good matching. A solid cone nozzle, or one with a narrow angle, would produce a poor match and probably create smoke in the center of the flame, which couldn’t be cleaned up by any adjustment of air.

Burners with Solid Air Patterns The burner air pattern shown above produces a moderate form of solid “air spray.” In actual tests this burner would show a slightly better CO₂ reading with a solid cone nozzle. This would become even more pronounced in burners showing higher air velocities at the center of the pattern.
Burners with Flame Retention Heads This type of firing is standard on all new equipment and most upgraded conversions. As the name implies (flame retention), the flame front is retained, or locked in close to the burner head. This is accomplished by means of a specially designed disc, with slots or edges over which the air flows, creating a recirculating airflow.

Properly designed and located, a flame retention head produces an efficient, compact, bushy fire that is free from smoke or excessive noise.

Nozzle selection for a specific burner should be in accordance with the manufacturer’s instructions for angle and pattern.

Burners with Flow Rates up to 2.00 GPH Hollow cone nozzles can be used successfully for most applications, even on burners with the highest air velocity in the center of the pattern. Generally, conventional or Shell Head burners can utilize hollow cone nozzles. In cases where more fuel is needed near the center, it may be advisable to select a nozzle with a narrower spray angle, or a solid cone type. Hollow cone nozzles in the smaller burners assure the quietest possible operation. That’s why they are sometimes used even if it means sacrificing CO₂. Type A and B Del-O-Flo can be used in place of standard A and B nozzles. A Type W nozzle can also be used with success.

Burners with Flow Rates Between 2.00 and 3.00 GPH Hollow or solid nozzles may be selected, depending upon burner air pattern. This range apparently is not as critical, therefore not subject to some of the problems found either above or below this range.

Burners with Flow Rates above 3.00 GPH Here it’s advisable to start with solid cone nozzles which produce smoother ignition in most burners at these higher flow rates. Burners with hollow air patterns are the exception. It is also interesting to note that in this flow range, pulsation is not as prevalent as in the smaller sizes.
Fuel Savings Devices
For the Consumer

Fuel-saving devices and systems available to the consumer are numerous and vary in cost, benefit and function. Since each homeowner’s circumstances differ, the service technician can determine what option will benefit the homeowner the most.

Several of these options have been tested by the Brookhaven National Laboratory, Upton, NY. They report that:

1. Irreparable, old and inefficient heating plants should be replaced with new high efficiency packaged equipment, including a correct firing rate and proper tuning. More or less than 25 percent yearly fuel savings can be achieved.

2. Heating plants in good condition and reasonably efficient can be refitted with a flame retention head burner and produce more or less than 18 percent savings depending on whether the heating unit is a boiler or furnace, and additional improvements where applicable to improve heat transfer. These improvements include a reduced firing rate, use of fire tube baffles, clean combustion chamber and heat exchanger, repair or replace combustion chamber, improve jacket insulation, and efficiency adjustments by qualified technicians.

3. Dual setback thermostats can produce more or less than nine percent savings depending on occupancy patterns, amount of setback and consistency in their use.

4. Flue dampers can produce more or less than nine percent savings depending on what type of damper is used, the type of burner in place, whether the heating unit is a boiler or furnace and the proximity of the heating unit to heated spaces. Note: fuel savings are not additive.

Preheaters

Preheaters can overcome the effects of cold oil but at the same time they can also affect nozzle performance. According to Delavan tests, flow rate, pattern and angle can be affected so it’s best to test the nozzle performance installed in a burner when a pre-heater is used.

Chemical Additives

Chemical additives play a significant role in the industry. Oil additives serve good purposes, such as making oil cleaner, easier flowing and easier to ignite, but they can sometimes have a negative effect on nozzle performance. Use care in selecting and using chemical additives.
Residential Oil Burner Adjustments for Optimum Fuel Utilization

For complete instructions refer to these publications:

“Guidelines for Residential Oil Burner Adjustments,” U.S. Environmental Protection Agency

“The Professional Serviceman’s Guide to Oil Heat Savings,” R.W. Beckett Corp., 38251 Center Ridge Road, P.O. Box D, Elyria, OH 44035

Adjustments Concerning Nozzles

Annual replacement of the nozzle is recommended. The nozzle size should match the design load. DO NOT OVER SIZE. (For determination of over sizing refer to publications listed on page 8.) Short cycles and low percent “on” time result in higher overall pollutant emissions and lower thermal efficiency.

An in-line oil filter will reduce problems due to nozzle clogging. It should be located as close as possible to the oil burner. Care should be taken to prevent air leakage into the oil suction line. Use continuous runs of copper tubing and use minimum number of joints and fittings. Always use flare fittings. Select the nozzle and spray pattern, whenever possible, using burner manufacturer’s instructions. On burner-boiler or burner-furnace matched assemblies, use the appliance manufacturer’s instructions. Bleed air from the pump and nozzle piping to avoid trapped air.

Good Filtration Is Important

We’ve been saying the nozzle is the heart of the oil heating system and it is critical to prevent nozzle contamination. Good filters will remove extraneous dirt in the oil, as well as rust and sludge that form in the fuel tank and could plug the nozzle slots or orifice.

Check the line filter between the tank and pump, and replace it frequently. After working on the system, flush a pint of oil through the oil line to get rid of any stirred-up sediment. Use properly sized filters and strainers on the nozzle. A Delavan line filter on installations under two gallons-per-hour flow is also recommended.
Oil Burner Nozzles
Delavan ProTek™ Nozzle System

The Delavan ProTek™ Nozzle System combines a Delavan nozzle and the unique Delavan ProTek™ Valve Component, a patented nozzle filter with a built-in control valve. This unique System has been designed to improve nozzle performance at start up and prevent poor shut off and after drip. It provides the following distinct benefits:

- Reduction of combustion pollutants for cleaner air
- Reduction of soot and carbon build-up for cleaner furnace operation and faster, easier service clean-ups
- Elimination of costly fuel afterburn and drizzling
- Immediate and efficient firing at start-up
- Dramatic reduction of hydrocarbons at start-up and shut down
- Plus, there’s no need to increase pump supply pressure

Delavan Filtration Products
ProTek™ Nozzle System/ProTek™ Valve

Available as a complete system (nozzle and valve assembly) or the valve can be purchased separately to replace the standard filters on Delavan nozzles 2.00 GPH or less. Two versions of the valve are available (see chart below).

<table>
<thead>
<tr>
<th>Valve Part #</th>
<th>Supply Pump PSI (BAR)</th>
<th>Valve Open PSI (BAR)</th>
<th>Valve Close PSI (BAR)</th>
</tr>
</thead>
<tbody>
<tr>
<td>60030-1</td>
<td>135.0 (9.3)</td>
<td>125.0 (8.6)</td>
<td>65.0 (4.5)</td>
</tr>
<tr>
<td>60030-2</td>
<td>100.0 (7.0)</td>
<td>85.0 (5.9)</td>
<td>45.0 (3.1)</td>
</tr>
</tbody>
</table>

Reduces soot and carbon formation with cleaner starts, and prevents poor shut down and after drip.

Delavan ProTek™ Nozzle System
Sintered filters (for lower gph nozzles) are made of thousands of tiny bronze pellets fused together into a most effective filtering medium of uniform thickness and density. Delavan mesh strainers are constructed of brass bodies and monel screens.

Nozzle filters and strainers cannot be expected to handle the complete filtering job. A line filter between the tank and burner is strongly recommended.

<table>
<thead>
<tr>
<th>Furnished as Standard on these sizes</th>
<th>Part Number</th>
<th>Filter or Strainer Description</th>
<th>Media or Mesh Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>.40 & .50 - 2.00</td>
<td>45560-4</td>
<td>Sintered</td>
<td>Super Fine</td>
</tr>
<tr>
<td>2.25 - 15.00</td>
<td>45560-1</td>
<td>Sintered</td>
<td>Fine</td>
</tr>
<tr>
<td>16.00 & Up</td>
<td>46046-2</td>
<td>Mesh</td>
<td>120M</td>
</tr>
<tr>
<td></td>
<td>---</td>
<td>None</td>
<td></td>
</tr>
</tbody>
</table>

Use Delavan’s line filter for extra filtration in burner applications of 2.00 GPH or less.

These offer four times the filtering area of a standard nozzle strainer and twice the protection.

A plugged line filter can cause a pressure drop. Check the pressure on the outlet side of the filter while the unit is flowing to see that it is the same as the pump pressure. If less, replace filter.

- 1/8” NPT inlet and outlet threads
- Easy installation (see drawing)

NOTE: Replace the line filter during the annual service check for an economical way to maintain clear lines.
Other Helpful Delavan Residential Oil Heat Accessories

Adaptrap / Nozzle Adapters

Delavan’s versatile PN 34478 nozzle changer will now pass through the new smaller openings on flame-retention air swirlers. Just snap off outer socket and use inner socket alone to remove or install the nozzle.

For normal openings, snap on outer socket and use like standard nozzle changer. Fits both 3/4” and 1 1/16” adapters.

Service Technician’s Kit

This kit is designed to hold 41 nozzles and is constructed of heavy-gauge steel with carrying handle, snap latch and removable steel tray. It is also designed to hold the following accessories:

- #32781-4 1/4” MPT test gauge (0 to 300 psi)
- #29168 Plastic container for filters & strainers
- #34478 Nozzle changer
- #2838 Female coupling (1/4” FPTx1/4” flare)
- #2839 Half union (1/8”x1/4” flare)
- #2840 Half union (1/4”x1/4” flare)
- #2843 Tubing section and two flare nuts

Telescoping Inspection Mirrors

Three types of flame inspection mirrors are available... the round (3-3/4” dia.), the rectangular (1-15/16” x 3-3/4”) and the small rectangular or mini (1-1/8” x 3”). They are furnished with handles, which telescope down to fit into a service technician’s kit. A cloth bag is provided to protect the mirror finish.

- #12269 Rectangular Mirror Head Assembly
- #12672 Round Mirror Head Assembly
- #33174 Mini Mirror Head Assembly
- #13148 Swivel Bracket Assembly

Other Accessories Available: Gauges, Nozzle Boxes.
Nozzle Care and Service Tips

An oil burner nozzle is an intricate piece of hardware, designed to do an accurate job of atomizing and metering fuel oil in the spray pattern best suited to a given burner. You can help assure top performance of this vital component by following the important guidelines in this section.

Until installation, keep nozzles in their original containers and preferably in a suitable box or rack. They should not be permitted to roll around in a drawer or toolbox, or carried loose in pockets. On service calls, they should be kept in a clean nozzle box.

Handle the nozzle carefully after removing from its individual container. Pick it up by the hex flats and by all means avoid touching the filter or strainer with greasy hands. This can force foreign material into the nozzle where it can finally work its way into the slots. The possibility for problems is even greater with nozzles of lower flow rates since they have smaller slots...easier to clog.

Nozzles should always be handled with clean tools... again to reduce the possibility of contamination. To properly service a nozzle and check its performance, it’s recommended that you use a pressure gauge, vacuum gauge, nozzle changer and flame inspection mirror.

Be sure the strainer or filter is in place on the nozzle before installation. Do not disassemble the nozzle before installing it because great care has been taken to make sure the nozzle is absolutely clean on delivery.
VERY IMPORTANT

Before installing a new nozzle, it is very important to flush the nozzle line and adapter with at least a pint of oil pumped through it to remove sludge and dirt. Or you can blow out the line with compressed air if it’s available. Failure to do this has been the reason for numerous callbacks for plugged nozzles.

The nozzle orifice is polished to a glasslike finish. Don’t ruin it with a wire or pin, or by bumping it with a wrench. This can cause streaks in the spray.

Don’t blow into the nozzle. While this may seem to be the handiest and quickest way to “clean” a nozzle, you run the risk of contaminating it instead.

A nozzle can become overheated due to back pressure in the combustion chamber. This results in coke and sludge formation both inside and outside of the nozzle. To correct this problem, set the over fire draft for at least .02 inches of water column or follow furnace or boiler manufacturer’s specifications.

On a conventional installation, be sure the end of the burner tube is flush or slightly set back with the inside wall of the combustion chamber to prevent the nozzle from becoming overheated. Follow manufacturer’s specifications when available.
Make sure the fuel tank is clean. Water and sludge in the tank can clog lines, filter or nozzles.

Be sure the supply line filter (between tank and burner) is adequate for the size of nozzle used. It will remove many of the small particles which may be present in the fuel oil or formed in the tank. Filtration is particularly recommended for burners using small nozzles. The filtering element should be replaced at each summer cleanup and the line flushed out with oil. The Delavan line filter should also be replaced annually.

Nozzle Cleaning — A quality nozzle should last through a normal heating season if reasonably clean oil is supplied to it. And there have been cases where a nozzle has worked several heating seasons if it is not overheated. However, experience has shown most service organizations that best results can be obtained, and more economically, by replacing nozzles annually. To clean a nozzle properly is a painstaking, time-consuming job. And in the lower flow rates, it’s practically impossible to see whether the distributor slots are thoroughly clean without the aid of a microscope. In the long run, you will save your time and the customer’s money by a program of nozzle replacement, rather than clean up.
DETERMINING BURNER PATTERN
To establish the correct spray pattern, try a hollow cone nozzle with an 80° spray angle (a popular angle in the industry). If the pattern is not satisfactory change to a solid cone nozzle. Reducing nozzle angle in 10° increments from 80° is a good way to find proper angle. (Mobile home units usually require 90° spray angles.)

NOISY FIRES
Pulsation and thumping or rumbling can be most objectionable to a homeowner. It’s possible in some cases to correct the situation by proper nozzle selection.

• If the unit is fired with a solid cone nozzle, try a hollow cone or Type W nozzle.
• If the unit is fired with a 60° nozzle, the noise level can be reduced in most cases by going to a wider angle.
• Check to make sure the pump pressure is properly set.
• Check the nozzle spray to be sure it is satisfactory. If the nozzle is clogged, it may be impossible to ignite the resulting spray.
• Check the spray pattern. Above 2.00 GPH, some burners give delayed ignition with the hollow cone sprays, in which case a solid cone nozzle may be the answer.
• Sometimes the next size smaller nozzle will help. Also, the smaller droplets will burn cleaner decreasing the amount of soot and dirt.
• Installing a delayed opening solenoid valve on the nozzle line can usually help pulsation during start up or shutdown.

COLD OIL
Outside storage tanks can be a source of burner problems because oil becomes more viscous as the temperature drops. This, in turn, can result in slow ignition, collapsing sprays and noisy fires. There have been some cases where the oil was so cold it would not flow through the pipe.

Although some success with special nozzles has been reported, the surest cure for this problem is to increase the pump pressure to 120-125 psi and use the next size smaller nozzle. The extra energy from the pump will atomize the heavier oil, resulting in better ignition and a more stable flame.
DELAYED IGNITION
Check the following items:

• Check for proper electrode setting.

• Check the insulators for cracks or for a conducting coat of soot or oil. Cracks sometimes occur under the electrode bracket, causing a short circuit.

• Check to see that the air shutter isn’t too wide open.

Figure 19 Recommended Electrode Settings.

NOTE: Above 4.00 GPH, it may be advisable to increase dimension C by 1/8” to insure smooth starting. When using double adapters: (1) Twin ignition is the safest and is recommended with settings same as above. (2) With single ignition, use the same A and B dimensions as above, but add 1/4” to dimension C. Locate the electrode gap on a line midway between the two nozzles.

<table>
<thead>
<tr>
<th>Nozzle</th>
<th>GPH</th>
<th>A</th>
<th>B</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>45°</td>
<td>(.75-4.00)</td>
<td>1/8” to 3/16”</td>
<td>1/2” to 9/16”</td>
<td>1/4”</td>
</tr>
<tr>
<td>60°</td>
<td>(.75-4.00)</td>
<td>1/8” to 3/16”</td>
<td>9/16” to 5/8”</td>
<td>1/4”</td>
</tr>
<tr>
<td>70°</td>
<td>(.75-4.00)</td>
<td>1/8” to 3/16”</td>
<td>9/16” to 5/8”</td>
<td>1/8”</td>
</tr>
<tr>
<td>80°</td>
<td>(.75-4.00)</td>
<td>1/8” to 3/16”</td>
<td>9/16” to 5/8”</td>
<td>1/8”</td>
</tr>
<tr>
<td>90°</td>
<td>(.75-4.00)</td>
<td>1/8” to 3/16”</td>
<td>9/16” to 5/8”</td>
<td>0</td>
</tr>
</tbody>
</table>

FURNACE ROOM ODORS
In the case of furnace room odor, check these items:

• Check the draft over the fire and make sure it is at least .02 inches of water column. If it’s lower than that, check for obstructions in the flues, or for poor chimney draft.

• Check to be sure that the unit is not being over fired.

• Check to see that there is not too much air through the burner.

• Delayed ignition also can be a cause of odors.
SMOKY FIRES
Since there are a number of possible causes, it follows that there are several things to check:

- Check the air handling parts of the burner. Make sure the fan blades, air intake and air vanes in the combustion head are clean. If dogs or cats are kept in or near the furnace room, it’s not uncommon to find hair in the oil burner fan.

- Check combustion chamber or the burner tube for damage. In the case of a stainless steel chamber, it might be burned through in one or more places. Or in the case of a brick chamber, some of the bricks might have become dislodged, leaving openings. Sometimes a burner end cone will be burned off or warped.

- Check the nozzle for contamination. If clogged, it could produce an off-center fire resulting in smoke.

- Going to a size smaller nozzle might eliminate smoke.

Spray Impingement

Spray Impingement corrected by using a narrower spray angle

Figure 20

- Check to see if nozzle spray angle is too wide for the burner air pattern. In this case, smoke may form at the side of the fire. The solution is to select the next narrower spray angle.

- A solid cone spray pattern in a burner with a hollow air pattern will produce a smoky center in the fire. This can be corrected by changing to a hollow cone nozzle of the proper spray angle.

- Check for spray impingement on the walls or floor of the combustion chamber, or at the end of the burner tube. This is a cause of carbon build-up and smoky fires. It’s usually corrected by the proper choice of spray angle, or by going to solid cone spray pattern. If it’s at the end of the burner tube, you may have to relocate the nozzle.
OFF-CENTER FIRES

• May be caused by off center location of the nozzle in the burner tube. The nozzle tube or bracket may be bent or improperly located.

• If the heavy flame always appears on the same side in a particular burner, this is due to a peculiarity of the air pattern in that burner and it can’t be corrected by changing nozzles.

• A nozzle contaminated by sludge or other foreign matter will usually produce an off center fire.

• A hollow air pattern will sometimes pull a solid cone spray over to one side, causing an off center fire. This can be corrected by changing to a hollow cone nozzle.

LONG FIRES

A narrow spray angle always produces a long fire. High viscosity oil also can be a cause since the spray angle tends to collapse. As mentioned before, this can sometimes be solved by increasing pump pressure and going to the next size smaller nozzle. Solid cone nozzles also produce a longer fire.
Questions Asked by Oil Heating Service Technicians

I have a job on which it is difficult to clean up the fire. What should I do?

1. Check the fire to see whether it is off center (see discussion of off center fires next column).
2. Check the fan blades and if they are covered with lint and dirt, clean them.
3. If this is a conventional oil burner, check for a burned-off end cone.
4. Check the oil pressure to be sure that it is at least 100 psi.
5. Check for a plugged line filter or pump strainer.
6. If the smoke is at the outside edges of the fire, try a narrow angle nozzle.
7. If the smoke occurs at the end of the fire, it might be well to try a wider spray angle.
8. The burner may have insufficient air capacity for this firing rate.
9. The burner may have too high air capacity for this firing rate. This would mean that the burner head couldn’t handle a low firing rate.
10. It might just be a very inefficient burner, which cannot be made to burn clean.
11. The nozzle may be partially plugged, resulting in poor atomization.
12. The oil may have a high viscosity or it might be cold, resulting in a collapsing spray.
13. Get sufficient air into the boiler room. If necessary, put in an air intake pipe with a screen and storm cover.
The fire in a burner is always off center and heavy on the right side. I can’t find a nozzle that will straighten up the fire.

1. If the flame is always heavy on one side, the nozzle does not cause it. It would be impossible to make a nozzle spray that is heavy on one side and always have it come up on the same side of the burner.
2. Check the position of the nozzle in the burner head. The chances are it is off to one side or the other.
3. With a short burner tube, the air stream may be stronger on one side than the other. That will give the appearance of an off center fire.
4. If the burner is installed to one side of the combustion chamber, the flame may also give the appearance of being heavy on one side.
5. If the nozzle spray pattern is off center due to contamination or any other reason, it may make a flame, which is heavy on one side, but it could be in any direction.

How do you cure pulsation?

1. A hollow cone nozzle generally gives greater freedom from pulsation that a solid cone nozzle.
2. A wider spray angle sometimes helps a pulsating condition. It may even be necessary to use a 90° nozzle. In this case watch for smoke at the outer edges of the fire.
3. Reduce the firing rate to the next smaller nozzle if it will carry the heating load.
4. The combustion chamber may be too large, allowing the fire to leave the burner.
5. Higher oil pressure sometimes helps because it gives a more stable spray pattern and smaller droplets, which burn closer to the burner.
6. Be sure there is air intake into the boiler room.
7. Sometimes a flame retention burner will cure or improve a pulsating or rumbling condition.

I have a customer who complains of having soot particles on the floor around the boiler and other places in the basement. The fire is clean. What is the reason for this?

1. Make sure that you have adequate chimney draft so that there is not a back-pressure in the smoke pipe when the burner starts. This type of complaint occurs with a long smoke pipe between the boiler and the chimney. If the smoke pipe does not have enough pitch, there may be a back-pressure at the boiler connection even with sufficient chimney draft.
2. Check for an obstruction at the point where the smoke pipe enters the chimney.
3. Cement up all leaks in the boiler setting where soot might come out on the start.
4. Install a delayed opening solenoid valve or ProTek valve in the nozzle line to make smoother starts.
If the burner sometimes fails to ignite smoothly and starts with a puff, what can be done to improve it?

1. Check the electrode points for proper spacing. The points should be 1/8" to 3/16" apart, 9/16" above the centerline of the nozzle and then spaced correctly forward from the face of the nozzle for each different spray angle.
2. Clean carbon and dirt from the points and from the insulators.
3. The transformer may be weak and not delivering full voltage or current. If you don’t have another transformer immediately available, file the electrodes to a sharp point. This will give a better spark.
4. Check for cracked insulators. Sometimes an insulator may be cracked under the electrode bracket and it is difficult to find. This could cause a high voltage leak, thus reducing the voltage at the points.
5. A partially plugged nozzle causing off-center spray can cause delayed ignition.
6. Above about 2.50 gph a hollow cone spray sometimes may cause delayed ignition. Changing to a solid cone sometimes helps that situation.
7. The air setting on the burner may be wide open, thus tending to blow the fire out before it is established. Adjust the air correctly.

I have tried firing fractional gallonage nozzles and they only work two or three weeks and plug up. Does everyone have that same problem?

1. Fractional gallonage nozzles have become a very popular nozzle and are giving good satisfaction if properly used. First of all, do not remove a nozzle from its vial before you are ready to install it in the burner. That may contaminate it.
2. Be sure an adequate supply line filter is installed. This size of nozzle should have a filter capable of removing particles over 50 microns. The problem is to know which filter will do that. Generally speaking, the paper filters are finer than the felt or woven filters that are generally available.
3. Install a Delavan line filter for extra nozzle protection. Make sure all trapped air is removed and follow installation instructions.
4. The Delavan Del-O-Flo nozzle may help. It was designed especially to minimize the usual plugging problems associated with low flow rates.
5. Flush or blow out the nozzle line and adapter before installing the nozzle.
6. If the nozzle runs exceptionally hot, find out why and remove the cause.
Other Delavan Nozzles Available

(See Oil Burner Nozzle Catalog #1709E for ordering and technical information.)

Oil Burner Nozzles for Industrial Applications

Variflo™
Pressure Atomizing Nozzles for good atomization over a wider flow range.

Airo™
Pressure Atomizing Nozzles for good atomization over a wider flow range.

Siphon Type SNA™
Air Atomizing Nozzle for extremely fine spray particle over a wider flow range.

Swirl Air
Air Atomizing Nozzle for maximum use of input hydraulic and pneumatic energy to atomize fuels at low pressure.

Humidification Nozzles for Oil Burner Applications

WDA WDB
Hollow Cone Solid Cone
Pressure Atomizing nozzles for humidifying
Delavan has been designing and manufacturing nozzles for the oil heating industry for over 55 years. Quality assurance was important to us in 1945 and still is. Since those early days, Delavan has grown and expanded into other product lines as well, such as gas turbine engine nozzles and accessories; nozzles, pumps and accessories for agricultural and industrial spraying, and controls for process instrumentation.

Delavan is unique in the oil heating industry because we have developed training materials and programs to educate the oil heating service technician. Our nozzles are the most widely distributed in the U.S. and Canada and also are exported to many other countries. Delavan is the leader in designing and manufacturing nozzles for special industrial combustion applications. We specialize in working with original equipment manufacturers in designing the best nozzles to fit their burners.